Интересная Жизнь

Фотосинтез улучшили на двадцать процентов

14.05.2020 11:14

Фотосинтез улучшили на двадцать процентов

Искусственный фотосинтез, собранный в водных микрокаплях, перерабатывает в несколько раз больше углекислого газа, чем растения.

Суть фотосинтеза в том, что углекислый газ с помощью энергии света превращается в глюкозу. В эту короткую фразу укладывается множество реакций и множество сложнейших молекул, не говоря уже о том, что у фотосинтеза есть много вариантов: например, кислород получается не при всяком фотосинтезе, некоторые фотосинтезирующие бактерии его не выделяют.

Но при всей сложности фотосинтеза в нём можно выделить фазу, которая идёт только на свету, и фазу, которая может идти в темноте. Световая фаза (которая сама делится на несколько этапов) – это уловление квантов света и превращение их энергии в химическую энергию молекул АТФ, или аденозинтрифосфата. Химические связи в АТФ легко рвутся, высвобождая много энергии, которую можно использовать в любых биохимических реакциях. И в темновой фазе фотосинтеза энергия АТФ расходуется на синтез из CO2 углеводной молекулы.

Главную роль тут играет фермент, которого сокращённо зовут РуБисКо (а вообще-то – рибулозобисфосфаткарбоксилаза). РуБисКо присоединяет молекулу углекислого газа к вспомогательной молекуле рибулозо-1,5-бисфосфат, и образующееся соединение подхватывают другие ферменты. То есть РуБисКо – тот самый, кто вовлекает СО2 в органическую жизнь.

Но работает этот фермент медленно, даже слишком медленно – он использует всего 5–10 молекул в минуту. Собственно, он ограничивает рост растений: если бы РуБисКо работал быстрее, то и биомасса прирастала скорее (хотя РуБисКо есть не только у растений). И вот несколько лет назад исследователи из Института наземной микробиологии Общества Макса Планка модифицировали один из бактериальных ферментов РуБисКо так, что он стал работать в 10 раз быстрее. Кроме того, модифицированный фермент дополнили ещё шестнадцатью ферментами из девяти различных организмов, чтобы все вместе они образовали единую цепочку – получился CETCH-цикл (CETCH – аббревиатура из названий разных промежуточных веществ, которые получаются в ходе цикла).

Следующим шагом было соединить CETCH-цикл со световой фазой. Для этого взяли тилакоидные мембраны из листьев шпината. Тилакоиды – мембранные пузырьки, которые находятся в хлоропластах; мембраны тилакоиды усажены ферментами, которые выполняют светозависимые реакции фотосинтеза. Известно, что тилакоиды могут жить и работать вне растительной клетки, и в статье в Science описано, как тилакоиды удалось совместить с белками ускоренного CETCH-цикла.

Ферменты CETCH и тилакоиды заключали в крохотные водяные капельки; пропорции ферментов в этих каплях можно было менять по своему усмотрению, и производить тысячи микрокапель с одинаковым составом. В итоге удалось оптимизировать общий рецепт так, чтобы темновой CETCH-цикл и световые реакции тилакоидов сочетались друг с другом с наибольшей эффективностью. С энергетической точки зрения улучшенный фотосинтез оказался в среднем на 20% эффективнее, чем фотосинтез растений.

Тут нужно уточнить, что CETCH-фотосинтез заканчивался не глюкозой – в капельках получалась гликолевая, или гидроксиуксусная, кислота. Впрочем, здесь важно то, что углекислый газ в принципе удалось втянуть в органические соединения, и что это получается делать с намного большей эффективностью, чем у обычных растений.

Гликолевую кислоту используют в различных хозяйственных отраслях, из неё можно делать другие органические вещества, так что микрокапли с улучшенным фотосинтезом могут стать обычным делом на предприятиях органического синтеза (где они заодно будут поглощать большое количество углекислого газа).

Источник

Читайте также
Редакция: | Карта сайта: XML | HTML